ewtonian Mechanics:
 Rectilinear Motion of a Particle
2.1 Newton’s Laws of Motion: Historical Introduction

In his Principia of 1687, Isaac Newton laid down three fundamental laws of motion,
which would forever change mankind’s perception of the world:

L. Every body continues in its state of rest, or of uniform motion in a straight line, unless
it is compelled to change that state by forces impressed upon it.

IL. The change of motion is proportional to the motive force impressed and is made in
the direction of the line in which that force is impressed.

III. To every action there is always imposed an equal reaction; or, the mutual actions of
two bodies upon each other are always equal and directed to contrary parts.

Newton's first law of motion.... Newton's second law of motion....
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Newton's third law of motion....

Force of A on B is equal and opposite to the force of B on A,




Newton’s First Law: Inertial Reference Systems

The first law describes a common property of matter, known as inertia.
- The physical quantity that measures inertia is called mass.

What is Inertia?

It is the resistance of a matter to change its state of motion. This means that; in the
absence of applied forces, matter simply persists in its current velocity state-forever.

Inertial Frames of Reference:

- A mathematical description of the motion of a particle requires the selection of a
frame of reference, or a set of coordinates according to which the position, velocity, and
acceleration of the particle can be specified.

- Uniformly moving reference frames (e.g. those considered at ‘rest' or moving with
constant velocity in a straight line) are called inertial reference frames.

- If we can neglect the effect of the earth’s rotations, a frame of reference fixed in
the earth is an inertial reference frame.

- Newton’s laws are only applicable at inertial reference frames.

Figure 2.1.1 A plumb bob hangs at an angle 6 in an accelerating frame of reference.

A simple example of a noninertial frame of reference .

Newton's Second and Third Laws (Mass and Force):
- The more massive an object is, the more resistive it is to acceleration.

Suppose we have two masses m1, m2 on a frictionless surface. Now imagine someone
pushing the two masses together, and then suddenly releasing them so that they fly apart,
achieving speeds v1 and v2 .
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The ratio of the two masses can be expressed as;

my _|vy
m v, (2.1.1)
Or  A(mv) ==A(mavy) 2.1.2)

The (-) appears because the final velocities vl and v2 are in opposite directions. If we
divide by At and take limits as At — 0 we obtain,

L myvy) = —%(mzvz) 2.1.3)

dt d
According to Newton's 2nd law, this “change of motion” is proportional to the force caused
it;

F « %(mv)

Defining the unit in the SI system, Newton's 2nd law can be expressed in the familiar form:
Thus, we finally express Newton’s second law in the familiar form

_d(mv) _
e ™

The force F on the left side of Equation (2.1.6) is the net force F,; acting upon the mass m.

F (2.1.6)

We note that Equation 2.1.3 is equivalent to
Fl = —F2 (217)

Which is Newton's 3rd law, that states; two interacting bodies exert equal and opposite
forces upon one another.



Linear Momentum

Since, p=mv is called linear momentum, the 2nd law can be rewritten as;

dp 2.1.9
F=2X (2.1.9)
dt

Thus, Equation 2.1.3, which describes the behavior of two mutually interacting masses,
is equivalent to

d
2B+ p2) =0 (2.1.10)

or
p1 + p2 = constant (2.1.11)

In other words, Newton's 3rd law implies that the total momentum of two mutually
interacting bodies is a constant.

EXAMPLE 2.1.2

A spaceship of mass M is traveling in deep space with velocity v, = 20 km/s relative to
the Sun. It ejects a rear stage of mass 0.2 M with a relative speed u = 5 km/s (Figure 2.1.4).
What then is the velocity of the spaceship?

Solution:

The system of spaceship plus rear stage is a closed system upon which no external forces
act (neglecting the gravitational force of the Sun); therefore, the total linear momen-
tum is conserved. Thus

Pf =Pi

where the subscripts ¢ and f refer to initial and final values respectively. Taking veloci-
ties in the direction of the spaceship’s travel to be positive, before ejection of the rear
stage, we have

Pi:MUi

Let U be the velocity of the ejected rear stage and vy be the velocity of the ship after
ejection. The total momentum of the system after ejection is then

Py = 0.20 MU + 0.80 My,
-(—/— Vf

Figure 2.1.4 Spaceship ejecting a V

rear stage.




The speed u of the ejected stage relative to the spaceship is the difference in velocities
of the spaceship and stage

u=vf——U
or
U=vf—-u

Substituting this latter expression into the equation above and using the conservation
of momentum condition, we find

0.20 M(v;—u) + 0.8 Moy = Mo,

which gives us

vf =0; +0.2u =20 km/s + 0.20 (5 km/s) = 21 km/s

Motion of a Particle

The fundamental equation of motion for a particle subject to the influence of a net force, F
IS,

_ d(mv) — ma

F
dt

By writing F as F,. the vector sum of all the forces acting on the particle.
Fnet :ZFi =m-——=ma (2].].2)

The usual problem of dynamics can be expressed in the following way:

1- Given a knowledge of the forces acting on a particle (or system of particles)
2- Calculate the acceleration of the particle.
3- Calculate the velocity and position as functions of time.

This process involves solving the second-order differential equation of motion, by
using the initial condition of the problem, such as the values of the position and
velocity of the particle at time t=0.

2.2| Rectilinear Motion: Uniform Acceleration
Under a Constant Force

When a moving particle remains on a single straight line, the motion is said to be
rectilinear. In this case, we can choose the x-axis as the line of motion, The general
equation of motion is then,

F (x,x,t) =mX (2.2.1)



1- The simplest case is when F is constant.

In this case a is constant ;

dv F
§i=2"=2 = constant = a (2.2.2a)
dt m
and the solution is obtained by direct integration with respect to time:
X =v=at+vo, (2.2.2b)
x = %at2 + vyt + %, (2.2.2¢)

where v, is the velocity and x, is the position at ¢ = 0. from the above equations

we obtain
2a(x —xg) = T 0(2)

There are a number of fundamental applications for such case. For example,
the acceleration of a body falling freely near the surface of the Earth, neglecting air
resistance, is nearly constant.

EXAMPLE 2.2.1

Consider a block that is free to slide down a smooth, frictionless plane that is inclined at an
angle 6 to the horizontal, as shown in Figure 2.2.1(a). If the height of the plane is h and
the block is released from rest at the top, what will be its speed when it reaches the bottom?

Solution:

We choose a coordinate system whose positive x-axis points down the plane and whose
y-axis points “upward,” perpendicular to the plane, as shown in the figure. The only
force along the x direction is the component of gravitational force, mg sin 6, as shown
in Figure 2.2.1(b). It is constant. Thus, Equations 2.2.2a—d are the equations of motion,
where




(a) (b) (c)

Figure 2.2.1 (a) A block sliding down an inclined plane. (b) Force diagram (no friction).
(c) Force diagram (friction f= u,N).

and
X—%x, = h
" sin®
Thus,
v? = 2(g sin 6) h =2gh
& sin@ &

Suppose that, instead of being smooth, the plane is rough; that is, it exerts a frictional
force f on the particle. Then the net force in the x direction, (see Figure 2.2.1(c)), is equal
to mg sin @ — f. Now, for sliding contact it is found that the magnitude of the frictional
force is proportional to the magnitude of the normal force N; that is,

f=uN

where the constant of proportionality s, is known as the coefficient of sliding or kinetic
friction.” In the example under discussion, the normal force, as shown in the figure, is

equal to mg cos 6; hence,
f=u,mgcosb
Consequently, the net force in the x direction is equal to
mg sin @— p,mg cos 6

Again the force is constant, and Equations 2.2.2a—d apply where

5c'=5 = g(sin 6 — y; cos 6)
m

The angle, tan™ y,, usually denoted by e, is called the angle of kinetic friction.

The speed of the partlcle increases if 6> ‘tan” p,..
the particle slides down the plane with constant speed. If O=¢, then a=0,

If6<eais negative, and so the partlcle eventually comes to rest,



2.3| Forces that Depend on Position: The Concepts
of Kinetic and Potential Energy

If the force is independent of velocity or time, then the differential equation for
rectilinear motion is simply

F(x) =mX (2.3.1)
using the chain rule to write the acceleration in the following way:
dx dx dx dv
A= —=—— = p— 2.3.2
dt dt dx dx ( )
so the differential equation of motion may be written
2
) = mp 32 2 m W) _dT (2.3.3)

dx 2 dx  dx
By integrating equation (2.3.3) we get the kinetic energy of the particle, - %Wﬂ

W= [ Fayde=T-T, (2.3.4)

The integral [ F(x)dx is the work W done on the particle by the impressed force F (x).
Let us define a function V(x) such that,

_dv() _ F(x) (2.3.5)
dx

The function V(x) is called the potential energy

In terms of V(x), the work integral is

W= [ F@di=-[ dV=-V(@)+V(x)=T-T, (2.3.6)
From (2.3.6);
T,+V(x,) =T +V(x)=E (2.3.8)

E is known as total mechanical energy of particle.

Note: Caa

I- E the sum of the kinetic and potential energies
is constant throughout the motion of the particle.

2- The force is a function only of the position x.
Such a force is said to be conservative.

3- v=0 when V(x)= E . This point known as
"the turning point”




The motion of the particle can be obtained by solving the energy equation (Equation
2.3.8) for v,

o= fl_’f =+ \/_Z_[E - V()] (2.3.9)
dt m
which can be written in integral form,
x dx
L =t—t,

° 4 \/ 2 5y (2.3.10)
m

thus giving ¢ as a function of x.

Exp (2.3.1): Free Fall
The motion of a freely falling body is an example of
conservative motion. In this case:

dV
Hence; dx
V =mgx +C

We can choose C = (), which means that V" = (0 when x = (. The
energy equation is then

| 2 —
smv-+mgx = £

For instance, let the body be projected upward with initial
speed v, from the origin x=0. These values give;

l 2 _ 1 2
<o Ssmv- +mgx =smv, +0

2 2
Vo =y, —2gx

The turning point of the motion, which is in this case the
maximum height, is given by setting v = 0. This gives

2
_ W

h=x__ =
2g

max




EXAMPLE 2.3.2

Variation of Gravity with Height
(Newton’s law of gravity).” Thus, the gravitational force that the Earth exerts on a body

of mass m is given by
F=- Gl\gm
r
in which G is Newton's constant of gravitation, M is the mass of the Earth, and r is the
distance from the center of the Earth to the body.

When the body is at the surface of the Earth,

GM GM
F,=—-mg and mg = Zm thus g = —
Te Te

Let x be the distance above the surface, so that, r = r. + X,

2

Te

=mx
2
(r, +x)

F(x) =—mg

To integrate, we set ¥ = vdv/dx. Then
r dx v
~mgr? ———=| modv
X0 (Te +x) 0o

Te“l‘x Te+x0

From the equation,
W = j F(x)de==[ dV=-V(x)+V(x))=T-T,
X0 X

The potential energy is,




| Maximum Height: Escape Speed
Suppose a body is projected upward with initial speed v, at the surface of the Earth,

The energy equation then yields,

1 1 1 1
mgre2 - = §mv2 —Emv(zJ
r,+x T,+x,

Let x,=0 then solving for v*,

—x
2 r2< >=v2—v2
e\ + o, ’
—x
N
29\ Fx | TV T
re
1
—29gx g =2 —p?
T
-1

X
0® = vp —2gx| 1+—
T

e

The turning point (maximum height) is found by setting v = 0 and solving for x. The result is,

2 2 \1
A (H.W)

Using this last, exact expression, we solve for the value of v, that gives an infinite value

for h. This is called the escape speed, and it is found by setting the quantity in paren-

theses equal to zero. The result is
0, = (2gr)"”
This gives, for g =9.8 m/s> and r,=6.4X 10° m,
v, = 11 km/s = 7 mi/s




EXAMPLE 2.3.3

The Morse function V(x) approximates the potential energy of a vibrating diatomic mol-
ecule as a function of z, the distance of separation of its constituent atoms, and is given by

Vix) = Vo[l _ e-(x—xo)/6]2 _v, ]|

Show that:
1- x, is the separation of the two atoms at equilibrium, i.e.
when the potential energy function is minimum. "
2- and that V(x J=-V,.

Solution V(x) is min when its derivative (w.r.t) x is zero;

F(x) = _dl (x) 0
ax
El—'ffl o Aaialad | Paamdd B
{.} " ry I
-I _ El—lf.l—.l 18 — I’}
n(1) = ~(x—x,)/
X=X,

Substituting in the main equation, the value of the min V{x) can be found as; V{x J=-V,

EXAMPLE 2.3.4
Shown in Figure 2.3.2 is the potential energy function for a diatomic molecule.

Solution:

All we need do here is expand the potential energy function near the equilibrium

position.
2
V(x) = VO[I - (1 - (x -(-Sxo m -V,

62
dV(x) _ 2V,
dx 52

F(x)=— (x —x)




2.4| Velocity-Dependent Forces: Fluid Resistance
and Terminal Velocity

It often happens that the force that acts on a body is a function of the velocity of the body.
For example, in the case of viscous resistance exerted on a body moving through a fluid. If
the force can be expressed as a function of v only, the differential equation of motion may be

written in either of the two forms;

dv

E, + F(v) =m— 2.4.1

v tE(v)=m 7 ( )
dv

F, + F(v) = mv =2 2.4.2)
dx

The general solution for these equations are,

[5=mro

[5-e7e

Here F|, is any constant force that does not depend on v.

F(v) is not a simple function and generally must be found through experimental
measurements. However, approximation for many cases is given by the equation,

F(v) = —c;o—c,0|v] = =0 (c; +¢, |v]) (2.4.3)
in which ¢, and ¢, are constants whose values depend on the size and shape of the body.

Note, (The absolute-value sign is necessary on the last term because the force of fluid
resistance is always opposite to the direction of v.)

1-For small v the linear term (c,v) in F(v) can be used , while the

2- For large v the quadratic term(c,v|v|) dominates .

Linear or Quadratic ?

the ratio of, —2xed

lin

.fq}mcf _ lf.'zV‘U‘ .
-fffn' Cl 4
F

If the value of v will make the ratio (;L“d ~ 1)then it is a quadratic case, otherwise, it is
lin

a linear one.



Examples
For spheres in air,

¢, =155x10°D & ¢,=0.22D?
where D is the diameter of the sphere in meters.

Jas _ GV 0.22v|D?
fn’fn N C[V B 1-55)(10_4 VD

- (1.4><10-‘)

vl D

For small v the linear term in F(v) can be used , while the quadratic term dominates at
large v.

» A Baseball and Some Drops of Liquid
— Assess the relative importance of the linear and quadratic drag forces ona
baseball of diameter D = 7 em , traveling at a modest v = 5 m/s. Do the same for
a drop of rain (D = 1 mm and v = 0.6 m/s) and for a tiny droplet of oil used in the
Millikan oildrop experiment (D = 1.5 um and v = 5x105 m/s).
— Baseball ,
-’fn‘l.ln:.lu.ll _ 3
~? = (1.4%10%)(0.07 )(5) ~ 500
o fir
shows that f|
— Rain

is completely negligible for a baseball. Use  f=—¢,v

in V|
Q =(1.4x10°)(0.001 )(0.6) =1
shows that both are needed. Must use full expression f=—(cv+c,v
— il Drop

v| )

St =(1.4x107)(1.5x10° )(5x10~° ) =107

shows that f, .4 is completely negligible for the oil drop. Use f=—cv

EXAMPLE 2.4.1

Horizontal Motion with Linear Resistance

Suppose a block is projected with initial velocity v, on a smooth horizontal surface and
that there is air resistance such that the linear term dominates. Then, in the direction
of the motion, F = 0 in Equations 2.4.1 and 2.4.2, and F(v) = —c,v. The differential
equation of motion is then

dv

dt

which gives, upon integrating,




Solution:

We can easily solve for v as a function of ¢ by multiplying by —c;/m and taking the expo-
nential of both sides. The result is
o= voe—clt/m

Thus, the velocity decreases exponentially with time. A second integration gives
t
— —citim
x .[0 voe "dt

— mUO (l_e—clt/m)
G

showing that the block approaches a limiting position given by x;,, = mvy/c;.

_EXAMPLE 2.4.2 |

Horizontal Motion with Quadratic Resistance

If the parameters are such that the quadratic term dominates, then for positive v we can write

9 d’D

dt

which gives

_pp-mdv_m(1l 1
= omdo_m(l 1
U Cy0 Co\ U 0
Solution:

Solving for v, we get
__ Y%
© 1+kt

where k = c,00/m. A second integration gives us the position as a function of time:

*0odt _ %14k

wt) = 0l+kt k



Vertical Fall Through a Fluid: Terminal Velocity

1- Linear Case Vertical Fall through a Fluid

For an object falling vertically in a resisting fluid, the force F, in this case, is the weight of the
object, -mg. For the linear case of fluid resistance, the differential equation of motion is;

v
—mg—cVv=m—
g6 r
. . : f,= /
Integrating and solving for v, we get , — & (ﬁ + v, )e ™ lin— €Y v

€ i

Terminal Velocity mg

After a sufficient time (¢ >> m/c ), the velocity approaches a

limiting value ( -mg/c,). This limiting velocity of a falling body is m

called the terminal velocity (v). Hence the terminal speed is; v, = mg
CI

The value of v,/g is known as the characteristic time of the motion (). i.e Vi _m

P =—=—

£ g

Looking at the dependence of the terminal speed, you can see that a more massive object
has a larger terminal speed. Conversely, if air resistance is great (value of ¢, is large), the
terminal speed is small.

At the velocity v, the force of air resistance is just equal and opposite to the weight of the
body (¢,v =-mg) so that the net force is zero, and so the acceleration is zero.

2- Quadratic case: [y this case F(v) o v* and the differential equation of motion is;

mg—c,v' =m dv
—me—cV = m—

’ dt
Similarly, the terminal speed is ;
And the characteristic time is; Vv m

r=-L
g .8



